Холодильник абсорбционный


Абсорбционные бытовые холодильники - Справочник химика 21

    По назначению различают бытовые холодильники, морозильники и холодильники-морозильники. В зависимости от способа получения холода бытовые холодильники могут быть компрессионными, абсорбционными и термоэлектрическими. В зависимости от способа их установки — напольными типа шкафа, напольными типа стола и блочно-встраиваемыми. В зависимости от числа камер — одно-, двух- и трехкамерными. [c.899]

    Принцип действия абсорбционных бытовых холодильников, как и других абсорбционных холодильных машин, основан на поглощении паров аммиака водой. [c.950]

    В абсорбционном бытовом холодильнике отсутствует и насос для перекачки раствора из абсорбера в генератор, так как вследствие равенства давления в этих аппаратах жидкость может перемещаться из одного в другой по принципу сообщающихся сосудов. По мере выбрасывания крепкого раствора из термосифона в генератор новые порции раствора из бачка абсорбера 6 снова поступают в термосифон. Накопившийся в генераторе слабый раствор переливается в верхнюю часть абсорбера. [c.951]

    Абсорбционные бытовые холодильники [c.76]

    Классификация и устройство абсорбционных бытовых холодильников [c.76]

    Абсорбционные бытовые холодильники, см. Холодильники бытовые абсорбционные Автомат для продажи газированной воды 30, 33 [c.234]

    Бытовые холодильники подразделяются по типу холодильной машины на компрессионные, абсорбционные и термоэлектрические. [c.51]

    В агрегате абсорбционных бытовых холодильников применена абсорбционно-диффузионная схема непрерывного действия (рис. 109). [c.321]

    При введении в контур, кроме рабочего агента и абсорбента, третьей среды в виде легкого газа можно создать абсорбционную установку непрерывного действия, не имеющую такого механизма, как насос. Такие установки небольшой производительности находят широкое применение для бытовых холодильников. [c.132]

    Однако абсорбционные холодильники имеют еще одно существенное достоинство они могут работать, используя другие источники теплоты кроме электрического тока, например нагрев керосиновой горелкой, нагрев газом бытовой сети. В последнем случае холодильник расходует не больше 0,8—1,0 м газа в сутки. При стоимости бытового газа 2 коп./м суточная эксплуатация газового холодильника может обходиться всего в 1,6— 2,0 коп., в то время как при стоимости электроэнергии в 4 коп./(кВт-ч) эксплуатация абсорбционного электрического холодильника обходится до 8—9 коп. в сутки, а компрессорного холодильника — до 4—5 коп. в сутки. [c.377]

    Рефрижерация. Кондиционирование воздуха и другие бытовые нужды. Все бытовые газовые холодильники работают по принципу абсорбционного охлаждения. Компрессорные холодильники более эффективны, чем абсорбционные установки, поэтому применение газовых холодильников ограничивается районами, где исключительно дорога электроэнергия (или нет возможности ее подвода), или особыми условиями, среди которых наиболее существенны бесшумность работы и отсутствие подвижных деталей. Однако СНГ и другие газы достаточно широко используются в бытовой холодильной аппаратуре. [c.205]

    В бытовых холодильниках применяют абсорбционно-диффузионные агрегаты непрерывного действия с инертным газом. Холодильным агентом служит водоаммиачный раствор, инертным газом — водород. [c.77]

    В бытовых абсорбционных холодильниках применяются электрические нагреватели с разными мощностями греющих спиралей (50—70—90 Вт или 60—100 Вт). Электронагреватель представляет собой металлическую гильзу длиной 230 мм и диаметром 22 мм со спиралью из нихромовой проволоки диаметром 0,31 мм. На спираль нанизаны фарфоровые втулки. [c.323]

    Бытовые холодильники по способу охлаждения делятся на две группы с компрессионным и абсорбционным охлаждением по назначению — на три типа для хранения продуктов в охлажденном состоянии и получения небольших количеств льда двухкамерные хо лодильники для хранения Охлажденных и мороженых продуктов низкотемпературные холодильники для замораживания пищевых продуктов и хранения их в замороженном виде. [c.306]

    Абсорбционно-диффузионные холодильные машины малой холодопроизводительности используются для охлаждения торгового оборудования и бытовых холодильников. [c.39]

    По способу получения холода бытовые холодильники разделяются на компрессионные, абсорбционные и термоэлектрические по емкости холодильной камеры — на малые, средние и большие. К малым относятся холодильники емкостью холодильной камеры 45—100 дм средним — 100—170 дм и большим — 170—350 дм . Холодильники могут иметь одну или две камеры. Бытовые холодильники с одной камерой предназначаются для хранения только охлажденных продуктов. Температура камеры в них поддерживается в пределах 8-=—2° Сив морозильном отделении до —10° С. Холодильники с двумя камерами используют для хранения охлажденных продуктов и для замораживания продуктов, для чего служит низкотемпературная камера, в которой поддерживается температура —18- 4—25° С. [c.315]

    Бытовые абсорбционные холодильники (типа Морозко , Садко , Ладога , Север , Иней , Кристалл и др.) предназначены для хранения пищевых продуктов в охлажденном и замороженном состоянии. [c.950]

    В отдельных случаях небольшая часть тепла, выделяющегося в абсорбционном отделении в виде теплой воды, вытекающей из холодильников кислоты, используется для обогрева помещений, а также для других бытовых и промышленных целей. [c.316]

    При стоимости бытового газа 2 коп/м и электроэнергии А коп кет ч) эксплуатация абсорбционно-диффузионного домашнего холодильника емкостью 100 л примерно в 2,5 раза дешевле, чем компрессионного. [c.324]

    Та блица II—9 Основные показатели назначения бытовых абсорбционных холодильников [c.80]

Рис. 109. Бытовой абсорбционный холодильник
    Из холодильных машин, относящихся к первой группе, пароводяная эжекторная машина находит в народном хозяйстве ограниченное применение, она используется только для кондиционирования воздуха и в некоторых случаях на рефрижераторных морских судах специального назначения. Абсорбционная машина применяется в химической и очень редко в других отраслях промышленности. В рыбной промышленности она используется на некоторых береговых, глубинных рыбопромышленных холодильниках и на небольшом количестве рыбопромышленных судов — рефрижераторов. Кроме того, абсорбционная машина применяется в малых бытовых шкафах-холодиль-никах. [c.31]

    Из всех ранее предложенных хладагентов только аммиак (R717), имеющий самые высокие термодинамические и техникоэксплуатационные показатели в широком интервале температур по сравнению с хладагентами групп ХФУ и ГХФУ, в настоящее время широко применяют в промышленных холодильных установках, охладителях, абсорбционных кондиционерах и бытовых абсорбционных холодильниках. [c.5]

chem21.info

Абсорбционный холодильник

Изобретение относится к холодильной технике, в частности к холодильникам абсорбционного типа, и может быть использовано для охлаждения помещений и регулировки их температурного режима в солнечных жарких регионах. Автономный абсорбционный холодильник без движущихся узлов с жидким абсорбентом включает генератор с источником нагрева раствора хладагента, конденсатор, абсорбер, испаритель, выполненный в виде замкнутого резервуара, термосифон с источником нагрева, последовательно соединенные замкнутым трубопроводом. Генератор снабжен дополнительными источниками нагрева, одним из которых является солнечное излучение. Абсорбер сопряжен с испарителем посредством ряда, распределенных по площади абсорбера и испарителя теплоизолированных трубок, через которые газообразный хладагент поступает из испарителя в абсорбер. Техническим результатом предложенного технического решения являются повышение эффективности и уменьшение габаритов холодильника, работающего с использованием солнечной энергии. Кроме основного результата предложенное техническое решение позволяет повысить надежность холодильника при временном отключении питания и работать длительное время без электрического питания в солнечных, жарких регионах, даже когда ночная температура превышает температуру охлаждаемого объекта. 18 з.п. ф-лы, 5 ил.

 

Изобретение относится к холодильной технике, в частности к холодильникам абсорбционного типа, и может быть использовано для охлаждения помещении и регулировки их температурного режима в солнечных жарких регионах, а также найти применение в других областях техники.

Ввиду отсутствия компрессоров, обеспечивающих принудительную и быструю циркуляцию хладагента по рабочему контуру, как это сделано в холодильниках компрессионного типа, эффективность абсорбционного холодильника невысока. Поэтому абсорбционные холодильники большой производительности являются громоздкими, что ограничивает область их применения.

Известен абсорбционный холодильник, в котором для повышения производительности, увеличивают число контуров: вводят несколько генераторов, конденсаторов, испарителей и т.д. /RU 2044966 С1/.

Недостатками этого холодильника являются громоздкость конструкции, растущая пропорционально числу контуров, и невысокая эффективность, так как она не зависит от числа контуров.

Известен абсорбционный холодильник для солнечных регионов, в котором электрическую энергию, необходимую для нагрева раствора хладагента в генераторе, получают от солнечных панелей /http://pics.livejournal.com/priroda su/pic/0016dpgg, 2009/.

Недостатками этого холодильника являются невысокая эффективность вследствие низкого кпд преобразования солнечной энергии в электрическую: ≈20% (косвенное использование солнечной энергии) и громоздкость из-за большой площади солнечных панелей.

Известна идея холодильника, непосредственно использующего солнечную энергию, в котором резервуар генератора с нагреваемом раствором хладагента расположен в фокусе параболического зеркала, обеспечивающего концентрацию солнечных лучей на резервуаре /там же/.

Недостатками этого устройства являются низкая эффективность его работы при прерывистом солнечном нагреве (облачность) вследствие быстрого охлаждения резервуара окружающим воздухом в отсутствие прямого солнечного нагрева и громоздкость устройства из-за больших размеров параболического зеркала.

Ближайшим техническим решением является абсорбционный холодильник без движущихся узлов с жидким абсорбентом, включающий генератор с источником нагрева раствора хладагента, конденсатор, испаритель, выполненный в виде замкнутого резервуара с патрубком для ввода жидкого хладагента, абсорбер, термосифон с источником нагрева и часть замкнутого трубопровода, соединяющего последовательно термосифон, генератор, конденсатор, патрубок для ввода жидкого хладагента (http://vivovoco.rsl.ru/vv/PAPERS/BIO/EINSTEIN.001/CHAPTER_6.HTM. 2009). Выходной патрубок испарителя использован для вывода газообразного хладагента, а оставшаяся часть замкнутого трубопровода соединяет последовательно этот патрубок, абсорбер и термосифон. Генератор снабжен одним источником нагрева раствора хладагента, функцию которого выполняет сетевой источник электроэнергии.

Недостатками этого устройства являются невысокая эффективность, громоздкость конструкции при его больших мощностях.

Технической задачей предложенного технического решения является создание автономного абсорбционного холодильника без движущихся узлов, способного работать в жарких странах с высокой производительностью.

Техническим результатом предложенного технического решения являются повышение эффективности и уменьшение габаритов холодильника, работающего с использованием солнечной энергии.

Кроме основного результата, предложенное техническое решение позволяет повысить надежность холодильника при временном отключении питания и работать длительное время без электрического питания в солнечных жарких регионах, даже когда ночная температура превышает температуру охлаждаемого объекта.

Технический результат достигается тем, что в известном абсорбционном холодильнике без движущихся узлов с жидким абсорбентом, включающем генератор с источником нагрева раствора хладагента, конденсатор, абсорбер, испаритель, выполненный в виде замкнутого резервуара, термосифон с источником нагрева, последовательно соединенные замкнутым трубопроводом, генератор снабжен дополнительными источниками нагрева, при этом, по крайней мере, одним из них является солнечное излучение, абсорбер сопряжен с испарителем посредством ряда распределенных по площади абсорбера и испарителя теплоизолированных трубок, через которые газообразный хладагент поступает из испарителя в абсорбер.

Кроме того, в генераторе и/или испарителе расположен, по крайней мере, один замкнутый резервуар с веществом, поглощающим тепло.

Кроме того, в холодильник введен, по крайней мере, один термический модуль Пельтье (ТМП) и, по крайней мере, один из источников нагрева хладагента в генераторе выполнен в виде горячего вывода ТМП, при этом холодный вывод ТМП производит дополнительный холод. При этом холодный вывод, по крайней мере, одного из ТМП имеет тепловой контакт с испарителем.

Кроме того, по крайней мере, один из источников нагрева термосифона выполнен в виде горячего вывода ТМП, при этом его холодный вывод производит дополнительный холод. При этом, по крайней мере, один из холодных выводов ТМП имеет тепловой контакт с испарителем.

Кроме того, температура плавления вещества в замкнутом резервуаре в испарителе ниже температуры охлаждаемого объекта, но выше рабочей температуры испарителя.

Кроме того, температура плавления вещества в замкнутом резервуаре генератора находится в диапазоне рабочих температур генератора.

Кроме того, конденсатор и отрезок трубопровода, соединяющего генератор с конденсатором, защищены от солнечных лучей экраном, а конденсатор имеет радиатор охлаждения.

Кроме того, в одном из частных случаев генератор выполнен в виде резервуара, сформированного внутренней и внешней оболочками, при этом верхние части обеих оболочек формируют замкнутую вакуумную полость, а остальное пространство между оболочками заполнено теплоизолирующим материалом, при этом внутренняя оболочка образует емкость для раствора хладагента, при этом внешняя сторона верхней части внутренней оболочки имеет высокую степень черноты в видимом и инфракрасном частях спектра и низкую - в дальней инфракрасной части спектра, на внутренней стороне верхней части внутренней оболочки установлен радиатор, снабженный массивным телом, размещенным у дна внутренней оболочки; в генераторе расположен, по крайней мере, один замкнутый резервуар с веществом, эффективно поглощающим тепло, и ультразвуковой источник.

Кроме того, по крайней мере, один из источников нагрева генератора, выполненного в виде вышеуказанной конструкции, и/или термосифона выполнен в виде горячего вывода ТМП, при этом холодный вывод ТМП производит дополнительный холод; при этом, по крайней мере, один из холодных выводов ТМП приведен в тепловой контакт с испарителем.

Изобретение иллюстрируется чертежами, где на фиг.1 показана принципиальная блок-схема абсорбционного холодильника целиком и отдельно на фиг.2 - конструкция генератора, а на фиг.3 - конструкция испарителя с абсорбером. На фиг.4 показана блок-схема варианта холодильника, в котором нагревателем генератора является горячий вывод ТМП. На фиг.5 - вариант конструкции холодильника для охлаждения помещений.

Пример реализации устройства в первом предпочтительном частном случае выглядит следующим образом (фиг.1).

Генератор 1 выполнен в виде резервуара для нагрева раствора хладагента и имеет источник нагрева, использующий солнечное излучение 2. Конденсатор 3 выполнен в виде резервуара для конденсации газообразного хладагента, поступающего из генератора 1. Испаритель 4 выполнен в виде замкнутого резервуара большой площади поверхности с патрубком для ввода жидкого хладагента 5 из конденсатора и ряда распределенных по площади испарителя теплоизолированных трубок для вывода газообразного хладагента 6. Абсорбер 7 выполнен в виде замкнутого резервуара большой площади, связанный с испарителем трубками 6. Термосифон 8 с источником нагрева 9 выполнен в виде вертикально расположенной колонны. Трубопровод 10, предназначенный для непрерывной циркуляции хладагента, соединяет последовательно генератор 1, конденсатор 3, входной патрубок 5 испарителя 4, абсорбер 7, термосифон 8 и генератор 1 в замкнутый контур. Дополнительный трубопровод 11 соединяет генератор 1 с абсорбером 7.

Устройство работает следующим образом.

При работе источника нагрева 2 выделяемое им тепло нагревает в генераторе 1 раствор хладагента, например, водоаммиачный раствор. Выделяемый при нагреве из раствора газообразный хладагент (аммиак) по трубопроводу 10 поступает в конденсатор 3, где конденсируется. Из конденсатора 3 жидкий хладагент по трубопроводу 10 поступает через вводной патрубок 5 в испаритель 4, где испаряется, выделяя холод (поглощая тепло), и понижает температуру испарителя. Пары хладагента по трубкам 6 поступают в абсорбер 7, где поглощаются слабым раствором хладагента, делая его насыщенным. Насыщенный раствор хладагента из абсорбера 7 по трубопроводу 10 с помощью термосифона 8 подается в генератор 1. Для сохранения баланса объема раствора в генераторе и ванне слабый раствор хладагента из генератора 1 по трубопроводу 11 возвращается в абсорбер 7. Кроме источника нагрева, использующего солнечное излучение, может быть использован любой известный источник энергии.

Генератор 1 с источником нагрева 2, непосредственно использующий солнечное излучение фиг.2, выполнен в виде резервуара 12, сформированного внутренней оболочкой 13, выполненной из теплопроводящего материала, например металла, алюминия. Внешняя оболочка состоит из двух частей: прозрачной для солнечных лучей части 14, например стекла, и формоустойчивой части 15, например, из металла. Оболочка 14 вместе с ближайшей частью внутренней оболочкой формируют сплошную вакуумную полость 16. Остальной пространство 17 между внешней и внутренней оболочкой заполнено теплоизолирующим материалом, например пробковой крошкой. Резервуар 12 имеет патрубок 18 для ввода концентрированного раствора хладагента и патрубки 19 и 20 для вывода газообразного хладагента и слабо концентрированного раствора соответственно.

Генератор работает следующим образом.

Его заполняют раствором хладагента и устанавливают так, чтобы полость 16 была ориентирована на Солнце. Солнечные лучи свободно проходят сквозь вакуумную полость 16 и хорошо поглощаются принадлежащей ей внутренней частью оболочки, которая передает тепло раствору хладагента. Конструкция позволяет минимизировать потери тепла и сохраняет температуру, поскольку процесс остывания сильно замедлен. Во-первых, сквозь теплоизолирующий материал тепло плохо передается от жидкости к внешней оболочке. Во-вторых, отвод тепла сквозь вакуумную полость 16 происходит излучением, а вследствие низкой температуры раствора хладагента, не более 200°С, и малой степени черноты ε≈0.01 внешней стороны внутренней оболочки, принадлежащей полости, минимален.

Испаритель 4 с абсорбером 7 показаны на фиг.3.

Испаритель работает следующим образом. Поступающий из конденсатора через вводной патрубок 5 в испаритель жидкий хладагент испаряется, поглощая тепло. По теплоизолированным трубкам 6 газообразный хладагент поступает из испарителя 4 в абсорбер 7. Слабо концентрированный раствор хладагента поступает из генератора 1 в абсорбер 7, где поглощает газообразный хладагент, пришедший из испарителя 4. Использование ряда трубок 6 не накладывает ограничений на пространственное расположение испарителя и абсорбера относительно друг друга, например, абсорбер может быть расположен выше испарителя, что невозможно в прототипе и известных схемах абсорбционных холодильников. Кроме того, испаритель и абсорбер могут располагаться на значительном расстоянии друг от друга, использование большого количества трубок 6 сохраняет высокую скорость прокачки газообразного хладагента из испарителя в абсорбер.

Эффективность устройства повышается, так как уменьшается расход электроэнергии вследствие непосредственного использования солнечного излучения и уменьшения тепловых потерь.

Габариты устройства по сравнению с прототипом уменьшаются вследствие больших возможностей пространственного взаиморасположения абсорбера и испарителя относительно друг друга.

Для уменьшения тепловых потерь в генераторе за счет излучения нагреваемого тела часть внутренней оболочки, принадлежащая полости 15, покрыта материалом с высокой степенью черноты в видимом и ближнем инфракрасном диапазоне спектра и низкой в диапазоне больших длин волн, например, выше 5 мкм.

Для более эффективного нагрева жидкости в резервуаре часть внутренней оболочки, принадлежащей полости 16 и обращенной внутрь резервуара, выполнена в виде радиатора 21, при этом для более эффективного нагрева жидкости радиатор 21 снабжен массивным телом 22, располагающимся у дна резервуара, что формирует в ней конвекционные потоки.

В качестве дополнительного источника нагрева 2 генератора 1 для повышения эффективности устройства при недостаточном солнечном излучении используют горячий вывод 23 термического модуля Пельтье (ТМП) 24, например Frost-73, при этом его холодный вывод 25 вырабатывает дополнительный холод, который можно непосредственно использовать для дополнительного охлаждения объекта 26, разместив этот вывод внутри него, или для охлаждения испарителя 4, приведя с ним в тепловой контакт вывод 25, фиг.4.

Повышение эффективности устройства можно обосновать следующим образом.

Эффективность охлаждения определяется через холодильный коэффициент r, равный отношению вырабатываемого «холода» q(Вт) к затрачиваемой электрической мощности w(Вт), r=q/w /http://www.kryotherm.ru 09.07.2009/.

Рассчитаем холодильный коэффициент предложенного устройства и сравним его с холодильным коэффициентом прототипа.

Пусть ТМП 24 потребляет электрическую мощность w1 и вырабатывает холод q1. Тогда горячий вывод 23 ТМП выделяет тепло мощностью q1+w1, которое идет на нагрев генератора 1, заменяя электрическую мощность его собственного нагревателя 2, если бы был таковой. Получив это тепло, генератор 1, конденсатор 3, испаритель 4, работая в режиме абсорбционного холодильника, вырабатывают холод q2. Холодильный коэффициент предложенного устройства равен

ry=(q1+q2)/w1.

Холодильный коэффициент абсорбционного холодильника с тем же произведенным холодом q2 был бы равен

rA=q2/(w1+q1).

Сравнение холодильных коэффициентов показывает, что он всегда больше у предложенного устройства ry.

Кроме того, при той же потребляемой электрической мощности w1 вырабатываемый в устройстве холод возрастает до q1+q2. Следовательно, производительность устройства увеличивается.

Для повышения эффективности устройства в качестве источника нагрева 9 термосифона 8 используют горячий вывод ТМП, а его холодный вывод вырабатывает дополнительный холод, который можно непосредственно использовать для дополнительного охлаждения объекта 26 или для охлаждения испарителя 4.

Схема включения ТМП и доказательство эффективности его использования аналогично приведенному выше доказательству использования ТМП применительно к генератору.

Для повышения надежности устройства при временном отключении питания и для его работы длительное время без электрического питания в солнечных, жарких регионах, когда ночная температура превышает температуру охлаждаемого объекта, в испаритель введен замкнутый резервуар 27 с веществом, эффективно поглощающим тепло (фиг.3). Например, вещество с большой энергией плавления и температурой плавления ниже температуры охлаждаемого объекта, но выше рабочей температуры испарителя.

В обычном режиме работы холодильника вещество, затвердевая, будет выделять тепло, которое компенсируется работой холодильника. При временном отключении питания холодильника процесс пойдет в обратном направлении: затвердевшее вещество начнет плавиться, эффективно поглощая тепло и поддерживая температуру постоянной. Время работы холодильника в таком режиме определяется массой вещества и, если она достаточна, то это позволит поддерживать низкую температуру объекта длительное время.

Для повышения надежности устройства при временном отключении питания и для его работы длительное время без электрического питания в солнечных жарких регионах, когда ночная температура превышает температуру охлаждаемого объекта, в генератор введен замкнутый резервуар 28 с веществом, эффективно поглощающим тепло (фиг.2). Например, вещество с большой энергией плавления и температурой плавления приблизительно равной рабочей температуре генератора.

В обычном режиме работы холодильника вещество, плавясь, будет аккумулировать тепло, которое компенсируется работой нагревателя генератора. При временном отключении питания холодильника процесс пойдет в обратном направлении: расплавленное вещество начнет затвердевать, эффективно выделяя тепло и поддерживая температуру постоянной. Время работы холодильника в таком режиме определяется массой вещества и, если она достаточна, то это позволит поддерживать низкую температуру объекта длительное время.

Повышение надежности устройства при отключении источника питания происходит вследствие поглощения/выделения тепла веществом в резервуаре ванны/генератора, т.е. холодильник и в этом режиме сохраняет свои функции.

Такой холодильник особенно эффективен при работе в пустынях, когда источником нагрева генератора является солнечные лучи. В ночное время, если температура окружающей среды выше рабочей температуры объекта, то запасенный в веществе холод позволит охлаждать объект.

Вариант конструкции устройства для охлаждения помещений в солнечных пустынных регионах показан на фиг.5.

Генератор 1, использующий солнечное излучение в качестве источника нагрева 2, вместе с конденсатором 3 с радиатором охлаждения 29, абсорбером 7 и частью термосифона 8 расположены вне помещения, например на его крыше. Для повышения эффективности работы устройства конденсатор 3 с радиатором охлаждения 29 и подходящий к нему от генератора 1 трубопровод 10 и абсорбер 7 защищены от прямых солнечных лучей специальным отражающим экраном 30. Для повышения эффективности устройства термосифон 8 и часть трубопровода 10, соединяющая его с генератором 1, приведены в тепловой контакт с трубопроводом 11, по которому слабый, но горячий раствор хладагента возвращается в абсорбер 7. В испарителе 4 размещены резервуары 27 с веществом, эффективно поглощающим тепло. Аналогичные резервуары 28 с веществом, эффективно поглощающим тепло, размещены в генераторе 1. Для формирования конвективных потоков в помещении 26 испаритель 4 выполнен с отверстиями 32, что позволяет снимать тепло с его верхней и нижней стороны, и расположен внутри помещения, у его потолка. В предложенном устройстве холод непосредственно передается от стенок испарителя в окружающее его пространство - к охлаждаемому объекту, поэтому устройство может эффективно охлаждать помещения.

Для интенсификации выделения газообразного хладагента из его раствора в генератор введен ультразвуковой источник 31 (фиг.2).

Устройство работает следующим образом.

Днем, используя солнечное излучение, устройство функционирует как абсорбционный холодильник, работа которого целиком и его узлов описана выше, фиг.1-3. Кроме охлаждения помещения 26 холодильник днем накапливает холод/тепло, аккумулируя их в резервуарах 27/28. Ночью они заставляют работать холодильник по схемам, описанным выше.

Таким образом, предлагаемая конструкция холодильника обеспечивает достижение заявленного технического результата во всех вариантах исполнения.

1. Автономный абсорбционный холодильник без движущихся узлов с жидким абсорбентом, включающий генератор с источником нагрева раствора хладагента, конденсатор, абсорбер, испаритель, выполненный в виде замкнутого резервуара, термосифон с источником нагрева, последовательно соединенные замкнутым трубопроводом, отличающийся тем, что генератор снабжен дополнительными источниками нагрева, при этом, по крайней мере, одним из них является солнечное излучение, абсорбер сопряжен с испарителем посредством ряда распределенных по площади абсорбера и испарителя теплоизолированных трубок, через которые газообразный хладагент поступает из испарителя в абсорбер.

2. Холодильник по п.1, отличающийся тем, что в генераторе и/или испарителе расположен, по крайней мере, один замкнутый резервуар с веществом, поглощающим тепло.

3. Холодильник по п.2, отличающийся тем, что температура плавления вещества в испарителе ниже температуры охлаждаемого объекта, но выше рабочей температуры испарителя.

4. Холодильник по п.2, отличающийся тем, что температура плавления вещества в генераторе находится в диапазоне его рабочих температур.

5. Холодильник по п.1, отличающийся тем, что конденсатор и отрезок трубопровода, соединяющий генератор с конденсатором, защищены от солнечных лучей солнцезащитным экраном, при этом конденсатор имеет радиатор охлаждения.

6. Холодильник по п.1, отличающийся тем, что в него введен, по крайней мере, один термический модуль Пельтье (ТМП) и, по крайней мере, один из источников нагрева хладагента в генераторе выполнен в виде горячего вывода ТМП, при этом холодный вывод ТМП производит дополнительный холод.

7. Холодильник по п.6, отличающийся тем, что холодный вывод, по крайней мере, одного из ТМП имеет тепловой контакт с испарителем.

8. Холодильник по п.1, отличающийся тем, что, по крайней мере, один из источников нагрева термосифона выполнен в виде горячего вывода ТМП, при этом его холодный вывод производит дополнительный холод.

9. Холодильник по п.8, отличающийся тем, что, по крайней мере, один из холодных выводов ТМП имеет тепловой контакт с испарителем.

10. Холодильник по п.1, отличающийся тем, что в него введен, по крайней мере, один из ТМП и, по крайней мере, один из источников нагрева хладагента в генераторе и один из источников нагрева термосифона выполнены в виде горячих выводов ТМП, при этом холодные выводы ТМП производят дополнительный холод.

11. Холодильник по любому из пп.1-6, отличающийся тем, что генератор выполнен в виде резервуара, сформированного внутренней и внешней оболочками, при этом верхние части обеих оболочек формируют замкнутую вакуумную полость, а остальное пространство между оболочками заполнено теплоизолирующим веществом, при этом внутренняя оболочка образует полость для раствора хладагента.

12. Холодильник по п.11, отличающийся тем, что верхняя часть внешней стороны внутренней оболочки имеет высокую степень черноты в видимой и инфракрасной частях спектра и низкую - в дальней инфракрасной части.

13. Холодильник по п.11, отличающийся тем, что на внутренней стороне верхней части внутренней оболочки установлен радиатор.

14. Холодильник по п.13, отличающийся тем, что радиатор снабжен массивным телом, размещенным у дна внутренней оболочки.

15. Холодильник п.11, отличающийся тем, что в него введен, по крайней мере, один ТМП и, по крайней мере, один из источников нагрева генератора и один из источников нагрева термосифона выполнены в виде горячих выводов ТМП, при этом холодные выводы ТМП производят дополнительный холод.

16. Холодильник по любому из пп.1-6, отличающийся тем, что в него введен, по крайней мере, один ТМП и, по крайней мере, один из источников нагрева генератора выполнен в виде горячего вывода указанного ТМП, при этом холодный вывод ТМП производит дополнительный холод.

17. Холодильник по п.16, отличающийся тем, что горячий вывод, по крайней мере, одного из ТМП служит источником нагрева термосифона, при этом холодный вывод ТМП производит дополнительный холод.

18. Холодильник по п.17, отличающийся тем, что, по крайней мере, один из холодных выводов ТМП имеет тепловой контакт с испарителем.

19. Холодильник по п.1, отличающийся тем, что в генератор введен ультразвуковой источник.

www.findpatent.ru

Холодильные агрегаты абсорбционного типа

Изобрел их Эйнштейн. Циркуляция рабочих веществ: абсорбента (воды) и хладагента (как правило, аммиака), имеющих разную температуру кипения при атмосферном давлении, осуществляется посредством абсорбции.  Абсорбционные холодильники в основном маленькие, однокамерные. Пример такой техники — великорусские холодильники «Морозко».

1 — кипятильник: 2 — дефлегматор: 3 — конденсатор: 4 — испаритель; 5 — абсорбер

При включении холодильного прибора в сеть нагреватели обеспечивают кипение водного раствора аммиака в генераторе и образование паров аммиака, которые затем поступают в ректификатор (у него в лекциях дефлегматор). В ректификаторе, наклоненном в сторону генератора, легкие пары аммиака проходят и попадают в конденсатор. Тяжелые пары воды превращаются в жидкость и сливаются обратно в генератор. В конденсаторе пары аммиака превращаются в жидкость. Жидкий аммиак из конденсатора, расположенного выше испарителя, поступает в испаритель. Парциальное давление паров аммиака в испарителе находится ниже давления насыщения аммиака, поэтому жидкий аммиак интенсивно испаряется, поглощая тепло из холодильной камеры. Система «жидкий аммиак – пары аммиака» не приходит в равновесие. Парциальное давление паров аммиака в испарителе остается ниже значения равновесия, т.к пары аммиака из испарителя через внешнюю трубку газового теплообменники уходят в абсорбер и растворяются в бедной аммиаком водно-аммиачной смеси, которая поступает по внешней трубке жидкостного теплообменника после выпаривания. По мере увеличения концентрации аммиака и объема водно-аммиачной смеси в абсорбере происходит возвращение в испаритель водорода, не растворенного в воде. Крепкий водно-аммиачный раствор из абсорбера поступает в генератор, где опять нагревается. Цикл работы повторяется.

Их основная особенность состоит в том, что они потребляют не механическую, а тепловую энергию. Отсюда вытекают их достоинства и недостатки.Абсорбционные машины просты по конструкции (кроме насосов для перекачки жидкости, в них нет других движущихся механизмов), дешевы в изготовлении, надежны, малошумны. Их можно размещать вне помещений: на открытых площадках под легкими навесами для защиты от осадков. Главный недостаток — невысокая энергетическая эффективность. Для выработки одинакового количества холода абсорбционным холодильным машинам требуется больше энергии, чем парокомпрессионным. Это хорошо видно на примере домашних холодильников — абсорбционный «накручивает» за месяц на электросчетчике заметно больше киловатт-часов, чем компрессионный. Но это внешняя сторона. Сущность же заключается в том, что в агрегате домашнего холодильника абсорбционного типа, питающегося от электросети, потребляемая электрическая энергия превращается в тепловую энергию, которая затем обеспечивает выработку холода.В крупных промышленных установках использовать электроэнергию необязательно. Тепловую энергию для обогрева генератора пара можно получать, сжигая газ или мазут, применяя горячий водяной пар и даже нагретую не до кипения воду. Затраты на производство тепловой энергии в этом случае меньше, чем при использовании электроэнергии, и может оказаться, что в целом (при благоприятном стечении различных обстоятельств) эксплуатация абсорбционной холодильной машины обойдется не дороже, чем эксплуатация парокомпрессионной. Если же на объекте имеются избыточные тепловые ресурсы в виде пара или горячей жидкости (тепло которых иногда даже «сбрасывают» в окружающую среду), то абсорбционные машины становятся выгоднее парокомпрессионных. Именно в таких случаях главным образом и используют абсорбционные машины.На практике применяют две разновидности абсорбционных машин — водоаммиачные и бромистолитиевые. Они работают на двух-компонентном рабочем веществе.В водоаммиачных машинах хладагентом служит аммиак, а абсорбентом — вода, в бромистолитиевых машинах — соответственно вода и бромистый литий. В бромистолитиевых машинах в испарителе кипит вода, поэтому с помощью этих машин можно получать температуры не ниже О °С, в противном случае вода замерзает.

Помимо аммиака и воды, могут использоваться и другие пары веществ — например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников — бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостатки — плохие удельные показатели хладопроизводительности на единицу объёма, чувствительность к положению в пространстве, а также недолговечность: трубопроводы такого холодильника относительно быстро засоряются продуктами коррозии. Кроме того, холодильный агрегат содержит ядовитый аммиак и горючий водород.

Важнейшими экономическими показателями являются:

1. расход электроэнергии нормальный, кВт*ч/сут – количество энергии, расходуемое прибором в течение 24 ч в установившемся режиме работы при температуре окруж среды 25С или 32С.2. Удельный расход электроэнергии – e=E/V(1-V1/V), где E- нормальный расход электроэнергии, V- общий объем брутто холодильника, V1 – объем НТО (МК)3. Цикл работы холодильника – время между двумя последовательными включениями (отключениями) холодильного агрегата в установившемся режиме работы4. Коэффициент рабочего времени (КРВ) – относительная продолжительность работы холодильного агрегата, определяемая делением времени работы на полное время цикла. Чем выше КРВ, тем больше затраты электроэнергии на работу холодильника.

К показателям, характеризующим холодопроизводительность относятся:

1. температура в НТО (НТК) – определяется температурой самого теплого испытательного пакета при полной загрузке отделения. Наиболее низкими температурами характеризуются бытовые модели со встроенным сублиматором или модели в функцией ускоренной глебокой заморозки.

2. Мощность замораживания – это масса испытательных пакетов, температура которых может понижаться от +25С или +32С до -18С за 24 ч при соответствующем режиме работы.

Время приготовления пищевого льда, количество производимого льда (кг/ч), время выхода на стабильный режим работы.

hron.com.ua

Абсорбционный холодильник - Большая Энциклопедия Нефти и Газа, статья, страница 4

Абсорбционный холодильник

Cтраница 4

Стирлинга ( Швейцария), фирма которого выпускает абсорбционные холодильники марки Сибир. Благодаря улучшению ректификации пара и теплообмена в аппаратах холодильного агрегата Стирлингу удалось несколько повысить тепловой коэффициент машины, получить более низкие температуры в холодильной камере и уменьшить массу агрегата.  [47]

Стирлинга ( Швейцария), фирма которого выпускает абсорбционные холодильники марки Сибир. Благодаря улучшению ректификации пара и теплообмена в аппаратах холодильного агрегата Стерлингу удалось несколько повысить тепловой коэффициент машины, получить более низкие температуры в холодильной камере и уменьшить массу агрегата.  [49]

Качество ремонта контролируют в процесе работы, испытывая каждый отремонтированный рабочий узел и в целом всю систему абсорбционного холодильника.  [50]

Эта величина в три-четыре раза меньше, чем холодильный коэффициент холодильных машин компрессорных холодильников, чему соответствует расход энергии на работу абсорбционного холодильника, что видно и в табл. 11.1. Выполненное сопоставление холодильного коэффициента компрессорной машины и теплового коэффициента абсорбционной машины правомерно потому, что в обеих машинах в данном случае затрачивается один и тот же вид энергии - электрическая.  [51]

Нагрев газом горячей воды высокого давления до 145 С и выдержка под достаточным давлением ниже температуры начала кипения, осуществляемые для нагрева горячей воды низкого давления и регенерации хладоагента абсорбционного холодильника концентрированного бромистого лития. Горячая вода низкого давления используется для нагрева реакторных емкостей до 65 С после охлаждения каждой ванны. Промежуточная вода используется для охлаждения нефти на первой фазе. Температура сохраняется на уровне 30 С путем охлаждения воды в градирне. Холодная вода используется для охлаждения сырой нефти до температуры 18 С в реакторной емкости. Охлаждающая вода используется для охлаждения промежуточной воды.  [53]

Из всех ранее предложенных хладагентов только аммиак ( R717), имеющий самые высокие термодинамические и технико-эксплуатационные показатели в широком интервале температур по сравнению с хладагентами групп ХФУ и ГХФУ, в настоящее время широко применяют в промышленных холодильных установках, охладителях, абсорбционных кондиционерах и бытовых абсорбционных холодильниках.  [54]

По способу установки различают стационарные и переносные абсорбционные холодильники. Стационарные абсорбционные холодильники подразделяются, как и компрессионные, на напольные, встроенные, настенные.  [55]

Абсорбционные холодильники по назначению, степени автоматизации оттаивания испарителя и климатическим условиям эксплуатации подразделяются аналогично компрессионным. В абсорбционных холодильниках применяется естественная циркуляция воздуха.  [56]

Холодильники всех типов имеют соответствующую маркировку. Так, например, абсорбционные холодильники Север, Ленинград, Газоаппарат и другие имеют индекс ХШ-3, ХШ-2, ХШ-5. Компрессионные холодильники Саратов, Орск, Мир, Бирюса, Юрюзань, ЗИЛ-Москва и другие имеют индексы КХШ-85, КХ-160, КХ-240, ДХ-120, ДХ-175. Буквы в индексах обозначают: X - холодильник, Ш - шкаф, К - компрессионный, Д - домашний, а цифры, как правило, - полезный объем холодильной камеры.  [57]

Точно так же, если бы абсорбционные холодильники выпускались с агрегатами большей производительности, то это не изменило бы их энергетической эффективности. Все же и в абсорбционных холодильниках целесообразно выполнять автоматическое поддержание температуры, что и делают некоторые заводы. Дело в том, что при невысоких внешних температурах и при малой загрузке холодильников продуктами в холодильной камере температура может понизиться до нежелательного уровня; возможно повышение напряжения в электросети в ночное время, что также вызывает излишнее понижение температуры в шкафу.  [58]

Страницы:      1    2    3    4

www.ngpedia.ru

абсорбционный холодильник - патент РФ 2101625

Использование: в холодильной технике, в частности в конструкциях абсорбционных холодильников. Может быть использовано при разработке холодильных установок, работающих за счет потребления солнечной энергии. Сущность изобретения: абсорбционный холодильник содержит абсорбционную, десорбционную, конденсационную и испарительную камеры, канал прокачки раствора из абсорбционной камеры в десорбционную и дополнительный канал, снабженный капиллярно-пористой перегородкой, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной - с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем. Соединенный с каналом прокачки конец дополнительного канала может быть заведен внутрь и ориентирован выходным отверстием в направлении к десорбционной камере. 14 з.п. ф-лы, 3 ил. Изобретение относится к холодильной технике, в частности к конструкции абсорбционных холодильников, работа которых основана на использовании экзотермических процессов смешения и эндотермических процессов разделения рабочего агента и абсорбента. Изобретение может быть использовано, например, при разработке холодильных установок, работающих за счет потребления солнечной энергии. Из уровня техники известна конструкция абсорбционного холодильника, выбранная в качестве прототипа, содержащая абсорбционную, испарительную, конденсационную и десорбционную камеры, соединенные каналами, и канал для прокачки раствора из абсорбционной камеры в десорбционную. Конструкция частично заполнена раствором абсорбента и рабочего агента, в качестве которых могут быть использованы соответственно вода и аммиак. В некоторых конструкциях дополнительно содержится инертный по отношению к раствору газ, например водород. В известной конструкции абсорбционного холодильника десорбционная камера функционально предназначена для осуществления процессов преобразования, ректификации и дефлегмации; в результате достигается отделение пара рабочего агента от раствора. В конденсационной камере осуществляется процесс конденсации пара рабочего агента, а в испарительной камере процесс парообразования. В абсорбционной камере пар рабочего агента поглощается слабым раствором при внешнем отводе тепла; образуемый крепкий раствор по каналу прокачки поступает в десорбционную камеру. Предлагаемое устройство следует рассматривать относительно прототипа как еще один вариант конструкции абсорбционного холодильника, обладающий новыми существенными отличиями. Возможные преимущества предлагаемого устройства будут обнаружены после проведения испытаний реального устройства. Цель изобретения достигается тем, что в известной конструкции абсорбционного холодильника, содержащей абсорбционную, десорбционную, конденсационную и испарительную камеры, а также канал прокачки раствора из абсорбционной камеры в десорбционную, установлен дополнительный канал, снабженный капиллярно-пористой перегородкой и имеющий входной и выходной концы, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной конец соединен с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем. Соединенный с каналом прокачки конец дополнительного канала может быть заведен внутрь и ориентирован выходным отверстием в направлении к десорбционной камере. На фиг. 1 изображена общая принципиальная схема абсорбционного холодильника; на фиг.2 и 3 частные схемы. Абсорбционный холодильник содержит абсорбционную 1, испарительную 2, конденсационную 3 и десорбционную 4 камеры, соединенные каналами 5, а также канал 6 прокачки раствора, по которому осуществляется прокачивание раствора абсорбента и рабочего агента из абсорбционной камеры в десорбционную. Установлен дополнительный канал 7, снабженный капиллярно-пористой перегородкой 8 и имеющий входной 9 и выходной 10 концы; при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной конец - с одной из камер. Поверхность 11 капиллярно-пористой перегородки, обращенная к каналу прокачки раствора, соединена тепловым контактом 12 с нагревателем 13. Выходной конец дополнительного канала может быть заведен в канал прокачки раствора и ориентирован выходным отверстием 14 в направлении к десорбционной камере (фиг. 2). Десорбционная камера может быть выполнена снабженной капилярно-пористой насадкой 15, разделяющей камеру на десорбционную полость 16 и ресивер 17 (фиг. 2). При этом десорбционная полость соединена с конденсационной камерой и с каналом прокачки раствора, а ресивер 17 соединен с абсорбционной камерой. Капиллярно-пористая насадка 15 может быть соединена тепловым контактом 12 с теплоподводом 18 и (или) с теплоотводом 19. Входной конец дополнительного канала может быть соединен с десорбционной камерой. Это соединение может быть выполнено в донной части десорбционной камеры или с ресивером десорбционной камеры (фиг.2). Абсорбционная камера может быть выполнена снабженной капиллярно-пористой насадкой 20, разделяющей камеру на абсорбционную полость 21 и ресивер 22 (фиг. 2). При этом абсорбционная полость соединена с испарительной и десорбционной камерами, а ресивер 22 соединен с каналом прокачки раствора. Капиллярно-пористая насадка 20 может быть соединена тепловым контактом 12 с теплоотводом 23. Входной конец дополнительного канала может быть соединен с абсорбционной камерой. Это соединение может быть выполнено в донной части абсорбционной камеры (фиг.1 и 3) или с ресивером абсорбционной камеры. Канал, соединяющий десорбционную камеру с абсорбционной, может иметь тепловой контакт 12 с каналом прокачки раствора на участке от абсорбционной камеры до места соединения с дополнительным каналом (фиг.2). Внутри соединенных каналами камер может содержаться инертный по отношению к раствору газ. При этом канал, соединяющий абсорбционную и испарительную камеры, может быть выполнен из двух раздельных опускного 24 и подъемного 25 каналов, соединенных с абсорбционной камерой на разных высотах (фиг.3). Устройство работает следующим образом. Выделяемое нагревателем 13 тепло через тепловой контакт 12 подводится к поверхности 11 и приводит к парообразованию в объеме слоя капиллярно-пористой перегородки, расположенной вблизи поверхности 11. Образуемый пар поступает в канал прокачки раствора 6, где смешивается с жидким раствором с образованием парожидкостной смеси, которая далее перетекает в десорбционную камеру. Этот процесс переноса раствора из абсорбционной камеры в десорбционную происходит более интенсивно, если выходной конец 10 дополнительного канала выполнен заведенным внутрь канала прокачки раствора и ориентирован выходным отверстием в направлении к десорбционной камере, поскольку выходящий из канала 7 поток пара вовлекает в направленное движение к десорбционной камере крепкий раствор из абсорбционной камеры. В десорбционной камере осуществляются процессы парообразования в растворах при наличии теплоподвода, ректификации (возрастание концентрации рабочего агента в паре вследствие тепломассообмена между поступающими по каналу прокачки паром и крепким раствором) и дефлегмации (конденсация паров абсорбента) при отводе тепла. В результате происходит отделение пара рабочего агента от жидкого раствора. Образуемый слабый раствор стекает в абсорбционную камеру, а пар рабочего агента поступает в конденсационную камеру и конденсируется. Образующийся конденсат перетекает в испарительную камеру, где возникает процесс парообразования; следует заметить, что подводимая для этого теплота составляет холодопроизводительность устройства. Парообразование в испарительной камере имеет место вследствие того, что в абсорбционной камере происходит процесс абсорбции поступающего из испарительной камеры пара рабочего агента абсорбентом. Этот процесс сопровождается выделением тепла и поэтому необходим теплоотвод. Образуемый в абсорбционной камере крепкий раствор прокачивается далее в десорбционную камеру через канал прокачки. Поступление питания к капиллярно-пористой перегородке дополнительного канала осуществляется с одной из камер; например, с абсорбционной (фиг.1 и 3) или с десорбционной (фиг.2). Если десорбционная камера выполнена снабженной капиллярно-пористой насадкой, разделяющей камеру на десорбционную полость и ресивер (фиг.2), то имеет место перетекание жидкого раствора через капиллярно-пористую насадку и "отсеивание" пара. Последнее возможно за счет менисков, образующихся в объеме слоя вблизи поверхности капиллярно-пористой насадки и удерживающих силами поверхностного натяжения паровые пузыри. Теплоподвод 18 способствует процессу парообразования, а теплоотвод 19 дефлегмации в десорбционной полости; в результате улучшается процесс отделения пара рабочего агента от жидкого раствора. Входной конец дополнительного канала может быть соединен с десорбционной камерой (фиг.2), в этом случае образуемый в десорбционной камере после отделения пара рабочего агента слабый раствор направляется в канал 7 для питания капиллярно-пористой перегородки 8 и в абсорбционную камеру 1. При выполнении абсорбционной камеры снабженной капиллярно-пористой насадкой 20, разделяющей камеру на абсорбционную полость и ресивер (фиг.2), процесс абсорбции пара рабочего агента, поступающего из испарительной камеры, дополнительно имеет место как на поверхности капиллярно-пористой насадки, так и в ее объеме. Поэтому процесс абсорбции усиливается в случае выполнения капиллярно-пористой насадки соединенной тепловым контактом с теплоотводом 23. В таком конструктивном исполнении капиллярно-пористая насадка обеспечивает транспортировку слабого раствора в зону абсорбции пара рабочего агента, протекание образуемого крепкого раствора в ресивер с одновременным исключением возможности прорыва пара рабочего агента, а также отвод тепла абсорбции. Соединение входного конца дополнительного канала с абсорбционной камерой (фиг. 1 и 3) предпочтительнее из соображений энергетической эффективности, поскольку в этом случае для питания капиллярно-пористой перегородки 8 используется раствор, который и должен непосредственно нагреваться для осуществления процесса парообразования с целью отделения пара рабочего агента от жидкого раствора в последующих процессах ректификации и дефлегмации. Выполнение канала 5, соединяющего десорбционную камеру с абсорбционной, снабженным тепловым контактом 12 с каналом прокачки раствора 6 на участке от абсорбционной камеры до места соединения с дополнительным каналом (фиг.2) повышает энергетическую эффективность устройства за счет уменьшения потерь тепла. Содержание внутри соединенных каналами камер инертного по отношению к раствору газа позволяет уменьшить перепады давления между камерами. Если при этом канал 5, соединяющий абсорбционную и испарительную камеры, выполнен из двух раздельных каналов, опускного 24 и подъемного 25, соединенных с абсорбционной камерой на разных высотах (фиг. 3), то создается контур циркуляции инертного газа. По каналу 24 опускается холодная (тяжелая) смесь пара рабочего агента и инертного газа, а по каналу 25 поднимется теплый (легкий) поток инертного газа. Следует обратить внимание, что возможно осуществление теплообмена парожидкостной смеси, образующейся в месте соединения дополнительного канала с каналом прокачки, с нижней частью десорбционной камеры, что приведет к дополнительному выпариванию рабочего агента. Использование дополнительного канала с капиллярно-пористой перегородкой приводит к возникновению направленного перетекания крепкого раствора из абсорбционной камеры в десорбционную.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Абсорбционный холодильник, содержащий соединенные каналами абсорбционную, десорбционную, конденсационную и испарительную камеры, а также канал прокачки раствора абсорбента и рабочего агента из абсорбционной камеры в десорбционную, отличающийся тем, что в нем установлен дополнительный канал, снабженный капиллярно-пористой перегородкой и имеющий входной и выходной концы, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем. 2. Холодильник по п.1, отличающийся тем, что выходной конец дополнительного канала заведен в канал прокачки раствора и ориентирован выходным отверстием к десорбционной камере. 3. Холодильник по п.1, отличающийся тем, что десорбционная камера снабжена капиллярно-пористой насадкой, разделяющей камеру на десорбционную полость и ресивер, при этом десорбционная полость соединена с конденсационной камерой и с каналом прокачки раствора, а ресивер с абсорбционной камерой. 4. Холодильник по пп.1 и 3, отличающийся тем, что установленная в десорбционной камере капиллярно-пористая насадка соединена тепловым контактом с теплоотводом и/или с теплоподводом. 5. Холодильник по п.1, отличающийся тем, что входной конец дополнительного канала соединен с десорбционной камерой. 6. Холодильник по пп.1 и 5, отличающийся тем, что входной конец дополнительного канала соединен с десорбционной камерой в донной части. 7. Холодильник по пп.1, 3 и 5, отличающийся тем, что входной конец дополнительного канала соединен с ресивером десорбционной камеры. 8. Холодильник по п.1, отличающийся тем, что абсорбционная камера снабжена капиллярно-пористой насадкой, разделяющей камеру на абсорбционную полость и ресивер, при этом абсорбционная полость соединена с испарительной и десорбционной камерами, а ресивер с каналом прокачки раствора. 9. Холодильник по пп.1 и 8, отличающийся тем, что установленная в абсорбционной камере капиллярно-пористая насадка соединена тепловым контактом с теплоотводом. 10. Холодильник по п.1, отличающийся тем, что входной конец дополнительного канала соединен с абсорбционной камерой. 11. Холодильник по пп.1 и 10, отличающийся тем, что входной конец дополнительного канала соединен с абсорбционной камерой в донной части. 12. Холодильник по пп.1, 8 и 10, отличающийся тем, что входной конец дополнительного канала соединен с ресивером абсорбционной камеры. 13. Холодильник по п.1, отличающийся тем, что канал, соединяющий десорбционную камеру с абсорбционной, имеет тепловой контакт с каналом прокачки раствора из абсорбционной камеры в десорбционную на участке от абсорбционной камеры до места соединения с дополнительным каналом. 14. Холодильник по п.1, отличающийся тем, что внутри соединенных каналами камер содержится инертный по отношению к раствору газ. 15. Холодильник по пп.1 и 14, отличающийся тем, что канал, соединяющий абсорбционную и испарительную камеры, выполнен из двух раздельных каналов, которые соединены с абсорбционной камерой на разных высотах.

www.freepatent.ru

Абсорбционный холодильник

 

Использование: в холодильной технике, в частности в конструкциях абсорбционных холодильников. Может быть использовано при разработке холодильных установок, работающих за счет потребления солнечной энергии. Сущность изобретения: абсорбционный холодильник содержит абсорбционную, десорбционную, конденсационную и испарительную камеры, канал прокачки раствора из абсорбционной камеры в десорбционную и дополнительный канал, снабженный капиллярно-пористой перегородкой, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной - с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем. Соединенный с каналом прокачки конец дополнительного канала может быть заведен внутрь и ориентирован выходным отверстием в направлении к десорбционной камере. 14 з.п. ф-лы, 3 ил.

Изобретение относится к холодильной технике, в частности к конструкции абсорбционных холодильников, работа которых основана на использовании экзотермических процессов смешения и эндотермических процессов разделения рабочего агента и абсорбента. Изобретение может быть использовано, например, при разработке холодильных установок, работающих за счет потребления солнечной энергии.

Из уровня техники известна конструкция абсорбционного холодильника, выбранная в качестве прототипа, содержащая абсорбционную, испарительную, конденсационную и десорбционную камеры, соединенные каналами, и канал для прокачки раствора из абсорбционной камеры в десорбционную. Конструкция частично заполнена раствором абсорбента и рабочего агента, в качестве которых могут быть использованы соответственно вода и аммиак. В некоторых конструкциях дополнительно содержится инертный по отношению к раствору газ, например водород.

В известной конструкции абсорбционного холодильника десорбционная камера функционально предназначена для осуществления процессов преобразования, ректификации и дефлегмации; в результате достигается отделение пара рабочего агента от раствора. В конденсационной камере осуществляется процесс конденсации пара рабочего агента, а в испарительной камере процесс парообразования. В абсорбционной камере пар рабочего агента поглощается слабым раствором при внешнем отводе тепла; образуемый крепкий раствор по каналу прокачки поступает в десорбционную камеру.

Предлагаемое устройство следует рассматривать относительно прототипа как еще один вариант конструкции абсорбционного холодильника, обладающий новыми существенными отличиями. Возможные преимущества предлагаемого устройства будут обнаружены после проведения испытаний реального устройства.

Цель изобретения достигается тем, что в известной конструкции абсорбционного холодильника, содержащей абсорбционную, десорбционную, конденсационную и испарительную камеры, а также канал прокачки раствора из абсорбционной камеры в десорбционную, установлен дополнительный канал, снабженный капиллярно-пористой перегородкой и имеющий входной и выходной концы, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной конец соединен с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем. Соединенный с каналом прокачки конец дополнительного канала может быть заведен внутрь и ориентирован выходным отверстием в направлении к десорбционной камере.

На фиг. 1 изображена общая принципиальная схема абсорбционного холодильника; на фиг.2 и 3 частные схемы.

Абсорбционный холодильник содержит абсорбционную 1, испарительную 2, конденсационную 3 и десорбционную 4 камеры, соединенные каналами 5, а также канал 6 прокачки раствора, по которому осуществляется прокачивание раствора абсорбента и рабочего агента из абсорбционной камеры в десорбционную. Установлен дополнительный канал 7, снабженный капиллярно-пористой перегородкой 8 и имеющий входной 9 и выходной 10 концы; при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной конец - с одной из камер. Поверхность 11 капиллярно-пористой перегородки, обращенная к каналу прокачки раствора, соединена тепловым контактом 12 с нагревателем 13.

Выходной конец дополнительного канала может быть заведен в канал прокачки раствора и ориентирован выходным отверстием 14 в направлении к десорбционной камере (фиг. 2).

Десорбционная камера может быть выполнена снабженной капилярно-пористой насадкой 15, разделяющей камеру на десорбционную полость 16 и ресивер 17 (фиг. 2). При этом десорбционная полость соединена с конденсационной камерой и с каналом прокачки раствора, а ресивер 17 соединен с абсорбционной камерой.

Капиллярно-пористая насадка 15 может быть соединена тепловым контактом 12 с теплоподводом 18 и (или) с теплоотводом 19.

Входной конец дополнительного канала может быть соединен с десорбционной камерой. Это соединение может быть выполнено в донной части десорбционной камеры или с ресивером десорбционной камеры (фиг.2).

Абсорбционная камера может быть выполнена снабженной капиллярно-пористой насадкой 20, разделяющей камеру на абсорбционную полость 21 и ресивер 22 (фиг. 2). При этом абсорбционная полость соединена с испарительной и десорбционной камерами, а ресивер 22 соединен с каналом прокачки раствора.

Капиллярно-пористая насадка 20 может быть соединена тепловым контактом 12 с теплоотводом 23.

Входной конец дополнительного канала может быть соединен с абсорбционной камерой. Это соединение может быть выполнено в донной части абсорбционной камеры (фиг.1 и 3) или с ресивером абсорбционной камеры.

Канал, соединяющий десорбционную камеру с абсорбционной, может иметь тепловой контакт 12 с каналом прокачки раствора на участке от абсорбционной камеры до места соединения с дополнительным каналом (фиг.2).

Внутри соединенных каналами камер может содержаться инертный по отношению к раствору газ.

При этом канал, соединяющий абсорбционную и испарительную камеры, может быть выполнен из двух раздельных опускного 24 и подъемного 25 каналов, соединенных с абсорбционной камерой на разных высотах (фиг.3).

Устройство работает следующим образом. Выделяемое нагревателем 13 тепло через тепловой контакт 12 подводится к поверхности 11 и приводит к парообразованию в объеме слоя капиллярно-пористой перегородки, расположенной вблизи поверхности 11. Образуемый пар поступает в канал прокачки раствора 6, где смешивается с жидким раствором с образованием парожидкостной смеси, которая далее перетекает в десорбционную камеру. Этот процесс переноса раствора из абсорбционной камеры в десорбционную происходит более интенсивно, если выходной конец 10 дополнительного канала выполнен заведенным внутрь канала прокачки раствора и ориентирован выходным отверстием в направлении к десорбционной камере, поскольку выходящий из канала 7 поток пара вовлекает в направленное движение к десорбционной камере крепкий раствор из абсорбционной камеры.

В десорбционной камере осуществляются процессы парообразования в растворах при наличии теплоподвода, ректификации (возрастание концентрации рабочего агента в паре вследствие тепломассообмена между поступающими по каналу прокачки паром и крепким раствором) и дефлегмации (конденсация паров абсорбента) при отводе тепла. В результате происходит отделение пара рабочего агента от жидкого раствора. Образуемый слабый раствор стекает в абсорбционную камеру, а пар рабочего агента поступает в конденсационную камеру и конденсируется. Образующийся конденсат перетекает в испарительную камеру, где возникает процесс парообразования; следует заметить, что подводимая для этого теплота составляет холодопроизводительность устройства. Парообразование в испарительной камере имеет место вследствие того, что в абсорбционной камере происходит процесс абсорбции поступающего из испарительной камеры пара рабочего агента абсорбентом. Этот процесс сопровождается выделением тепла и поэтому необходим теплоотвод. Образуемый в абсорбционной камере крепкий раствор прокачивается далее в десорбционную камеру через канал прокачки.

Поступление питания к капиллярно-пористой перегородке дополнительного канала осуществляется с одной из камер; например, с абсорбционной (фиг.1 и 3) или с десорбционной (фиг.2).

Если десорбционная камера выполнена снабженной капиллярно-пористой насадкой, разделяющей камеру на десорбционную полость и ресивер (фиг.2), то имеет место перетекание жидкого раствора через капиллярно-пористую насадку и "отсеивание" пара. Последнее возможно за счет менисков, образующихся в объеме слоя вблизи поверхности капиллярно-пористой насадки и удерживающих силами поверхностного натяжения паровые пузыри. Теплоподвод 18 способствует процессу парообразования, а теплоотвод 19 дефлегмации в десорбционной полости; в результате улучшается процесс отделения пара рабочего агента от жидкого раствора.

Входной конец дополнительного канала может быть соединен с десорбционной камерой (фиг.2), в этом случае образуемый в десорбционной камере после отделения пара рабочего агента слабый раствор направляется в канал 7 для питания капиллярно-пористой перегородки 8 и в абсорбционную камеру 1.

При выполнении абсорбционной камеры снабженной капиллярно-пористой насадкой 20, разделяющей камеру на абсорбционную полость и ресивер (фиг.2), процесс абсорбции пара рабочего агента, поступающего из испарительной камеры, дополнительно имеет место как на поверхности капиллярно-пористой насадки, так и в ее объеме. Поэтому процесс абсорбции усиливается в случае выполнения капиллярно-пористой насадки соединенной тепловым контактом с теплоотводом 23. В таком конструктивном исполнении капиллярно-пористая насадка обеспечивает транспортировку слабого раствора в зону абсорбции пара рабочего агента, протекание образуемого крепкого раствора в ресивер с одновременным исключением возможности прорыва пара рабочего агента, а также отвод тепла абсорбции.

Соединение входного конца дополнительного канала с абсорбционной камерой (фиг. 1 и 3) предпочтительнее из соображений энергетической эффективности, поскольку в этом случае для питания капиллярно-пористой перегородки 8 используется раствор, который и должен непосредственно нагреваться для осуществления процесса парообразования с целью отделения пара рабочего агента от жидкого раствора в последующих процессах ректификации и дефлегмации.

Выполнение канала 5, соединяющего десорбционную камеру с абсорбционной, снабженным тепловым контактом 12 с каналом прокачки раствора 6 на участке от абсорбционной камеры до места соединения с дополнительным каналом (фиг.2) повышает энергетическую эффективность устройства за счет уменьшения потерь тепла.

Содержание внутри соединенных каналами камер инертного по отношению к раствору газа позволяет уменьшить перепады давления между камерами. Если при этом канал 5, соединяющий абсорбционную и испарительную камеры, выполнен из двух раздельных каналов, опускного 24 и подъемного 25, соединенных с абсорбционной камерой на разных высотах (фиг. 3), то создается контур циркуляции инертного газа. По каналу 24 опускается холодная (тяжелая) смесь пара рабочего агента и инертного газа, а по каналу 25 поднимется теплый (легкий) поток инертного газа.

Следует обратить внимание, что возможно осуществление теплообмена парожидкостной смеси, образующейся в месте соединения дополнительного канала с каналом прокачки, с нижней частью десорбционной камеры, что приведет к дополнительному выпариванию рабочего агента.

Использование дополнительного канала с капиллярно-пористой перегородкой приводит к возникновению направленного перетекания крепкого раствора из абсорбционной камеры в десорбционную.

1. Абсорбционный холодильник, содержащий соединенные каналами абсорбционную, десорбционную, конденсационную и испарительную камеры, а также канал прокачки раствора абсорбента и рабочего агента из абсорбционной камеры в десорбционную, отличающийся тем, что в нем установлен дополнительный канал, снабженный капиллярно-пористой перегородкой и имеющий входной и выходной концы, при этом выходной конец дополнительного канала соединен с каналом прокачки раствора, а входной с одной из камер, а обращенная к каналу прокачки раствора поверхность капиллярно-пористой перегородки соединена тепловым контактом с нагревателем.

2. Холодильник по п.1, отличающийся тем, что выходной конец дополнительного канала заведен в канал прокачки раствора и ориентирован выходным отверстием к десорбционной камере.

3. Холодильник по п.1, отличающийся тем, что десорбционная камера снабжена капиллярно-пористой насадкой, разделяющей камеру на десорбционную полость и ресивер, при этом десорбционная полость соединена с конденсационной камерой и с каналом прокачки раствора, а ресивер с абсорбционной камерой.

4. Холодильник по пп.1 и 3, отличающийся тем, что установленная в десорбционной камере капиллярно-пористая насадка соединена тепловым контактом с теплоотводом и/или с теплоподводом.

5. Холодильник по п.1, отличающийся тем, что входной конец дополнительного канала соединен с десорбционной камерой.

6. Холодильник по пп.1 и 5, отличающийся тем, что входной конец дополнительного канала соединен с десорбционной камерой в донной части.

7. Холодильник по пп.1, 3 и 5, отличающийся тем, что входной конец дополнительного канала соединен с ресивером десорбционной камеры.

8. Холодильник по п.1, отличающийся тем, что абсорбционная камера снабжена капиллярно-пористой насадкой, разделяющей камеру на абсорбционную полость и ресивер, при этом абсорбционная полость соединена с испарительной и десорбционной камерами, а ресивер с каналом прокачки раствора.

9. Холодильник по пп.1 и 8, отличающийся тем, что установленная в абсорбционной камере капиллярно-пористая насадка соединена тепловым контактом с теплоотводом.

10. Холодильник по п.1, отличающийся тем, что входной конец дополнительного канала соединен с абсорбционной камерой.

11. Холодильник по пп.1 и 10, отличающийся тем, что входной конец дополнительного канала соединен с абсорбционной камерой в донной части.

12. Холодильник по пп.1, 8 и 10, отличающийся тем, что входной конец дополнительного канала соединен с ресивером абсорбционной камеры.

13. Холодильник по п.1, отличающийся тем, что канал, соединяющий десорбционную камеру с абсорбционной, имеет тепловой контакт с каналом прокачки раствора из абсорбционной камеры в десорбционную на участке от абсорбционной камеры до места соединения с дополнительным каналом.

14. Холодильник по п.1, отличающийся тем, что внутри соединенных каналами камер содержится инертный по отношению к раствору газ.

15. Холодильник по пп.1 и 14, отличающийся тем, что канал, соединяющий абсорбционную и испарительную камеры, выполнен из двух раздельных каналов, которые соединены с абсорбционной камерой на разных высотах.

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Абсорбционный холодильник Википедия

Абсорбционная холодильная машина на 14МВт

Абсорбционная холодильная машина (также абсорбционная бромистолитиевая холодильная машина, абсорбционный чиллер или АБХМ) — промышленная холодильная установка, предназначена для отбора и удаления избыточного тепла и поддержания заданного оптимального температурного и теплового режимов при работе различного рода производственного оборудования, технологических устройств, инструмента, оснастки, а также технологических процессов, связанных с повышенными тепловыми нагрузками. В качестве абсорбента в них используются различные растворы, например, бромида лития (LiBr) в воде.

К абсорбционным холодильным машинам относятся так же аммиачные холодильные установки абсорбционного принципа действия.

История создания АБХМ[ | код]

  • Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским учёным Вильямом Калленом[1]
  • Способность концентрированной серной кислоты поглощать (абсорбировать) водяной пар впервые была замечена Геральдом Найрне в 1777 году.
  • В 1810 году Джоном Лесли создана первая искусственная ледоделка на основе поглощения сернистого газа водой.
  • В 1834 году английским врачом Джейкобом Перкинсом (Jacob Perkins (англ.)) (1766—1844) была построена холодильная машина с использованием насоса (компрессора) на диэтиловом эфире.
  • Французским учёным Фердинандом Карре (1824—1900) и его братом Эдмондом Карре (Edmond Carre) в 1846 году была изобретена аммиачная абсорбционная холодильная машина. Несмотря на то, что его способ был очень удачным, об изобретении забыли на несколько десятилетий.
  • В 1871 году была построена машина, работающая на метиловом эфире.
  • В 1850 году Эдмонд Карре создал абсорбционную машину на воде и концентрированной серной кислоте.
  • В 1923 году австралийцем Эдвардом Халлстромом изобретён оригинальный аммиачный абсорбционный холодильник упрощённой конструкции — Icy Ball (англ. ледяной шар).
  • В 1926 году физики Альберт Эйнштейн и Лео Силард изобретают так называемый холодильник Эйнштейна, который был запатентован в США 11 ноября 1930 года[2].
  • В начале XX века в Москве была открыта фирма, которая предлагала всем желающим агрегат под названием «Эскимо». Данный агрегат был изготовлен по принципу, предложенному Фердинадом Карре. При своих больших габаритах, агрегат не издавал громкого шума и был универсальным. Для работы необходимы были уголь, дрова, керосин или спирт. Один цикл работы «Эскимо» позволял получить 12 кг льда.
  • Применение абсорбции в промышленном кондиционировании началось в конце 1950-х годов.
  • В 1985 году были разработана и запатентована более эффективная АБХМ — трёхступенчатая абсорбционная холодильная машина с тремя конденсаторами и тремя генераторами.
  • В 1993 году был запатентован альтернативный цикл трёхступенчатой абсорбционной холодильной машины с двойным конденсатором[3].

Типы абсорбционных охладителей[ | код]

Тип АБХМ Источник тепла Мощность
Охладители прямого нагрева (Direct-fired Chiller/heaters) Природный газ, дизельное топливо, отходящие дымовые газы. По холоду от 17 кВт до 12 МВт, по теплу — от 17 кВт до 8 МВт.
Охладители парового нагрева (Steam-fired chillers) Пар с температурой 75-200°С По холоду от 200 кВт до 15 МВт.
Охладители нагрева горячей водой (Hot water-fired chillers) Горячая вода с температурой 75-95°С на входе/до 65°С на выходе) По холоду от 105 кВт до 12 МВт.
Охладители нагрева выхлопными газами (Exhaust-fired chillers/heaters) Выхлопные газы с температурой 250—600°С на входе/до 150°С на выходе По холоду от 200 кВт до 12 МВт.

Принцип действия[ | код]

На представленной схеме Бромид-Литиевой абсорбционной холодильной машины охладитель состоит из двух камер.

  • Верхняя — генератор (AT). Это горячая камера с относительно высоким давлением.
  • Нижняя — испаритель (VD) и абсорбер (AB). Это холодная камера с очень низким давлением (2мБар).

Под действием тепла (HM) в генераторе из раствора бромида лития выделяются пары воды (хладагента), которые переносятся в конденсатор. Водяной пар конденсируется, отдавая тепло воде охлаждающего контура KüW. Охлажденная вода по линии 5 поступает в испаритель, где при низком давлении закипает при температуре +6 °C и забирает тепло от охлаждаемого контура чиллер-фанкойл (KW). Насос VD прокачивает воду на форсунки, что способствует более интенсивному теплообмену. В других типах АБХМ охлаждаемый контур не обрызгивается, а погружается в ванну хладагента.

Оставшийся концентрированный раствор бромида лития по линии 1-2 через растворный теплообменник/гидравлический затвор WT1 переходит в абсорбер. Для улучшения абсорбции раствор разбрызгивается форсунками и поглощает водяной пар из испарителя. Процесс абсорбции связан с выделением теплоты, которая отводится охлаждающим контуром KüW в абсорбере АВ. Полученный раствор воды и бромида лития перекачивается по линии 3-4 в генератор через регулятор/теплообменник WT1, и цикл повторяется снова.

Преимущества[ | код]

По сравнению с компрессионными холодильниками, АБХМ обладают следующими преимуществами:

  • Минимальное потребление электроэнергии. Электроэнергия требуется для работы насосов и автоматики.
  • Минимальный уровень шума.
  • Экологически безопасны. Хладагентом является обычная вода.
  • Утилизируют тепловую энергию сбрасываемой горячей воды, дымовых газов или производственных процессов.
  • Длительный срок службы (не менее 20 лет).
  • Полную автоматизацию.
  • Пожаро- и взрывобезопасность.
  • Абсорбционные машины не подведомственны Ростехнадзору.

Недостатки[ | код]

Абсорбционные охладители, по сравнению с компрессионными охладителями отличает:

  • Более высокая цена оборудования, примерно в 2 раза выше чем цена обычного охладителя.
  • Необходимость наличия дешевого (бесплатного) источника тепловой энергии с достаточно высокой температурой.
  • Относительно низкая энергетическая эффективность — тепловой коэффициент (отношение подведенной тепловой энергий к полученному холоду), равный 0,65-0,8 — для одноступенчатых машин, и 1—1,42 — для двухступенчатых машин.
  • Существенно больший вес, чем у обычного охладителя.
  • Необходимость использовать открытые охладители — градирни, что увеличивает водопотребление системы.

См. также[ | код]

Примечания[ | код]

Литература[ | код]

  1. Холодильные машины: Учебник для студентов втузов специальности «Техника и физика низких температур»/А. В. Бараненко, Н. Н. Бухарин, В. И. Пекарев, Л. С. Тимофеевский: Под общ. ред. Л. С. Тимофеевского.- СПб.: Политехника, 1997 г.- 992с.

Ссылки[ | код]

ru-wiki.ru


Смотрите также